Skip to content

积分不等式 总纲

构造积分上限函数

\(f(x)\) \([a,b]\) 上连续、递增,证明:

\[ \int_a^b xf(x)\mathrm{d}x \geq \dfrac{a+b}{2}\int_a^b f(x)\mathrm{d}x \]

证明:设辅助函数

\[ F(t)=\int_{a}^{t}xf(x)\mathrm{d}x-\frac{a + t}{2}\int_{a}^{t}f(x)\mathrm{d}x \]

显然 \(F(a) = 0\)。对任意 \(t\in[a,b]\),有

\[ F^{\prime}(t)=tf(t)-\frac{1}{2}\int_{a}^{t}f(x)\mathrm{d}x-\frac{a + t}{2}f(t)\\ \]
\[ =\frac{t - a}{2}f(t)-\frac{1}{2}\int_{a}^{t}f(x)\mathrm{d}x\\ \]
\[ =\frac{1}{2}\int_{a}^{t}[f(t)-f(x)]\mathrm{d}x, \quad x\in[a,t] \]

因为 \(f(x)\) 单调递增,则 \(F^{\prime}(t)\geq0\),则 \(F(t)\) 单调递增,所以 \(F(b)\geq F(a) = 0(b\geq a)\)。因此

\[ \int_{a}^{b}xf(x)\mathrm{d}x\geq\frac{a + b}{2}\int_{a}^{b}f(x)\mathrm{d}x \]

Tip

也可以用积分中值定理

利用 Lagrange

\(f(x)\) \([0,a]\) 上一阶连续可导,且 \(f(0)=0\)\(|f'(x)|\le M\),证明:

\[ \left|\int_0^af(x)\mathrm{d}x\right|\le \dfrac{M}{2}a^2 \]

证明:

\[ \left|\int_0^af(x)\mathrm{d}x\right|\le \int_0^a|f(x)|\mathrm{d}x = \int_0^a|f(x)-f(0)|\mathrm{d}x = \int_0^a|f'(\xi)x|\mathrm{d}x \]
\[ \le M\int_0^a|x|\mathrm{d}x = \dfrac{M}{2}a^2 \]

Tip

本题用 Lagrange 中值定理来联系函数值和导数值

利用分部积分

\(f(x)\) \([0,a]\) 上一阶连续可导,且 \(f(0)=0\)\(|f'(x)|\le M\),证明:

\[ \left|\int_0^af(x)\mathrm{d}x\right|\le \dfrac{M}{2}a^2 \]

证明:

\[ \int_0^af(x)\mathrm{d}x = \int_0^af(x)\mathrm{d}(x-a) = \int_0^a(a-x)f'(x)\mathrm{d}x \]
\[ \left|\int_0^af(x)\mathrm{d}x\right| = \left|\int_0^a(a-x)f'(x)\mathrm{d}x\right| \le \int_0^a(a-x)|f'(x)|\mathrm{d}x \le \dfrac{M}{2}a^2 \]

Tip

本题用分部积分来联系函数值和导数值 增加常数让分部积分第一项等于0也是在定积分有关题目中经常使用的技巧

\(f\) \([0,1]\) 有二阶连续导数,\(\vert f^{\prime\prime}(x)\vert\leqslant1\)\(\forall x\in[0,1]\)\(f'(0) = f'(1)\)。证明 :

\[ \left|\int_{0}^{1}f(x)\mathrm{d}x-\frac{f(0)+f(1)}{2}\right|\leqslant\frac{1}{24} \]

我们注意到:

\[ \left|\int_{0}^{1}f(x)\mathrm{d}x-\frac{f(0)+f(1)}{2}\right|=\left|\int_{0}^{1}f(x)d\left(x-\frac{1}{2}\right)-\frac{f(0)+f(1)}{2}\right| \]
\[ =\left|\int_{0}^{1}\left(x-\frac{1}{2}\right)f^{\prime}(x)\mathrm{d}x\right| \]
\[ =\frac{1}{2}\left|\int_{0}^{1}f^{\prime}(x)d\left(x-\frac{1}{2}\right)^{2}\right| \]
\[ =\frac{1}{2}\left|\int_{0}^{1}f^{\prime\prime}(x)\left(x-\frac{1}{2}\right)^{2}\mathrm{d}x\right| \]
\[ \leqslant\frac{1}{2}\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2}\mathrm{d}x=\frac{1}{24} \]

\(f\) \([0,1]\) 有一阶导数且 \(|f'(x) - f'(y)| \leq |x - y|\),证明:

\[ \left|\int_{0}^{1} f(x)\mathrm{d}x - \frac{f(0) + f(1)}{2}\right| \leq \frac{1}{12}. \]

证明:

\[ \left|\int_{0}^{1} f(x)\mathrm{d}x - \frac{f(0) + f(1)}{2}\right| = \left|\int_{0}^{1} \left(x - \frac{1}{2}\right) f'(x)\mathrm{d}x\right| \]
\[ = \left|\int_{0}^{1} \left(x - \frac{1}{2}\right) \left[f'(x) - f'\left(\frac{1}{2}\right)\right] \mathrm{d}x\right| \]
\[ \leq \int_{0}^{1} \left|x - \frac{1}{2}\right|^2 \mathrm{d}x = \frac{1}{12}. \]

利用 Taylor 展开式

\(f(x)\) \([0,1]\) 上二阶可导,\(f''(x)\lt 0\),证明 :

\[ \int_0^1f(x^2)\mathrm{d}x\le f(\dfrac{1}{3}) \]

证明

由泰勒公式,得

\[ f(t)=f\left(\frac{1}{3}\right)+f'\left(\frac{1}{3}\right)\left(t - \frac{1}{3}\right)+\frac{f''(\xi)}{2!}\left(t - \frac{1}{3}\right)^2 \]

其中 \(\xi\) 介于 \(\dfrac{1}{3}\) \(t\) 之间,从而

\[ f(x^2)\leq f\left(\frac{1}{3}\right)+f'\left(\frac{1}{3}\right)\left(x^2 - \frac{1}{3}\right) \]

积分得

\[ \int_{0}^{1}f(x^2)\mathrm{d}x\leq f\left(\frac{1}{3}\right) \]

\(f(x)\) \([a,b]\) 连续可导,\(f(a) = f(b) = 0,f'(x)\le M\),证明 :

\[ \int_a^bf(x)\mathrm{d}x\le \dfrac{M}{4}(b-a)^2 \]

证明

\[ \text{ 令 } F(x)=\int_{a}^{x}f(t)\mathrm{d}t, \quad F^{\prime}(a)=F^{\prime}(b)=0, \quad F(a)=0, \quad F(b)=\int_{a}^{b}f(x)\mathrm{d}x. \]
\[ F\left(\frac{a + b}{2}\right)=F(a)+F^{\prime}(a)\left(\frac{a + b}{2}-a\right)+\frac{F^{\prime \prime}(\xi_{1})}{2!}\left(\frac{a + b}{2}-a\right)^{2} \]
\[ F\left(\frac{a + b}{2}\right)=F(b)+F^{\prime}(b)\left(\frac{a + b}{2}-b\right)+\frac{F^{\prime \prime}(\xi_{2})}{2!}\left(\frac{a + b}{2}-b\right)^{2} \]
\[ \Rightarrow 0=\int_{a}^{b}f(x)\mathrm{d}x+\frac{(b - a)^{2}}{8}\left[F^{\prime \prime}(\xi_{2})-F^{\prime \prime}(\xi_{1})\right] \]
\[ \Rightarrow\left|\int_{a}^{b}f(x)\mathrm{d}x\right|=\frac{(b - a)^{2}}{8}\left|F^{\prime \prime}(\xi_{2})-F^{\prime \prime}(\xi_{1})\right|\leq\frac{M}{4}(b - a)^{2} \text{. 证毕!} \]

利用积分与求和统一

\(f'(x)\) \([0,1]\) 上连续,\(|f'(x)|\le M\),证明:

\[ \left|\int_0^1f(x)\mathrm{d}x-\dfrac{1}{n}\sum_{k=1}^{n}f\left(\dfrac{k}{n}\right)\right|\le \dfrac{M}{2n} \]

证明:

\[ \left|\int_{0}^{1} f(x)\mathrm{d}x - \frac{1}{n} \sum_{k = 1}^{n} f\left(\frac{k}{n}\right)\right| = \left|\sum_{i = 1}^{n} \int_{\frac{i - 1}{n}}^{\frac{i}{n}} f(x)\mathrm{d}x - \sum_{i = 1}^{n} \int_{\frac{i - 1}{n}}^{\frac{i}{n}} f\left(\frac{i}{n}\right)\mathrm{d}x\right| \]

Lagrange 中值定理

\[ \le \sum_{i = 1}^{n} \int_{\frac{i - 1}{n}}^{\frac{i}{n}} \left|f(x) - f\left(\frac{i}{n}\right)\right|\le \sum_{i = 1}^{n} \int_{\frac{i - 1}{n}}^{\frac{i}{n}} M\left(\dfrac{i}{n}-x\right)\mathrm{d}x = \dfrac{M}{2n} \]

Tip

把积分变成求和,把求和变成积分,统一以后用拉格朗日。

Cauchy 不等式

Cauchy 不等式

\(f(x)、g(x)\) \([a,b]\) 上连续,我们有柯西不等式:

\[ \int_a^bf^2(x)\mathrm{d}x\int_a^bg^2(x)\mathrm{d}x\ge\left(\int_a^bf(x)g(x)\mathrm{d}x\right)^2 \]

证明 : 方法很多,这里构造积分上限函数

\[ F(x)=\int_{a}^{x} f^2(t)\mathrm{d}t\cdot \int_{a}^{x} g^2(t)\mathrm{d}t - \left(\int_{a}^{x} f(t)g(t) \mathrm{d}t\right)^2, \quad F(a) = 0. \]
\[ \Rightarrow F^{\prime}(x)= f^2(x)\cdot \int_{a}^{x} g^2(t)\mathrm{d}t + \int_{a}^{x} f^2(t)\mathrm{d}t\cdot g^2(x) - 2\cdot \int_{a}^{x} f(t)g(t)\mathrm{d}t\cdot f(x)\cdot g(x) \]
\[ =\int_{a}^{x} \left(f^2(x)g^2(t)+f^2(t)g^2(x)-2f(t)g(t)f(x)g(x)\right) \mathrm{d}t=\int_{a}^{x} \left(f(x)g(t)-f(t)g(x)\right)^2 \mathrm{d}t \geq 0 \]
\[ \Rightarrow F(x) \geq F(a) = 0. 证毕! \]

\(f'(x)\) \([0,1]\) 连续,且 \(f(1)-f(0)=1\),证明:

\[ \int_0^1(f'(x))^2\mathrm{d}x\ge 1 \]

证明:

\[ \int_0^1(f'(x))^2\mathrm{d}x\int_0^1 1\mathrm{d}x\ge\left(\int_0^1f'(x)\mathrm{d}x\right)^2 = (f(1)-f(0))^2 = 1 \]