积分不等式 总纲
构造积分上限函数
设 \(f(x)\) 在 \([a,b]\) 上连续、递增,证明:
\[
\int_a^b xf(x)\mathrm{d}x \geq \dfrac{a+b}{2}\int_a^b f(x)\mathrm{d}x
\]
证明:设辅助函数
\[
F(t)=\int_{a}^{t}xf(x)\mathrm{d}x-\frac{a + t}{2}\int_{a}^{t}f(x)\mathrm{d}x
\]
显然 \(F(a) = 0\)。对任意 \(t\in[a,b]\),有
\[
F^{\prime}(t)=tf(t)-\frac{1}{2}\int_{a}^{t}f(x)\mathrm{d}x-\frac{a + t}{2}f(t)\\
\]
\[
=\frac{t - a}{2}f(t)-\frac{1}{2}\int_{a}^{t}f(x)\mathrm{d}x\\
\]
\[
=\frac{1}{2}\int_{a}^{t}[f(t)-f(x)]\mathrm{d}x, \quad x\in[a,t]
\]
因为 \(f(x)\) 单调递增,则 \(F^{\prime}(t)\geq0\),则 \(F(t)\) 单调递增,所以 \(F(b)\geq F(a) = 0(b\geq a)\)。因此
\[
\int_{a}^{b}xf(x)\mathrm{d}x\geq\frac{a + b}{2}\int_{a}^{b}f(x)\mathrm{d}x
\]
利用 Lagrange
设 \(f(x)\) 在 \([0,a]\) 上一阶连续可导,且 \(f(0)=0\),\(|f'(x)|\le M\),证明:
\[
\left|\int_0^af(x)\mathrm{d}x\right|\le \dfrac{M}{2}a^2
\]
证明:
\[
\left|\int_0^af(x)\mathrm{d}x\right|\le \int_0^a|f(x)|\mathrm{d}x = \int_0^a|f(x)-f(0)|\mathrm{d}x = \int_0^a|f'(\xi)x|\mathrm{d}x
\]
\[
\le M\int_0^a|x|\mathrm{d}x = \dfrac{M}{2}a^2
\]
Tip
本题用 Lagrange 中值定理来联系函数值和导数值
利用分部积分
设 \(f(x)\) 在 \([0,a]\) 上一阶连续可导,且 \(f(0)=0\),\(|f'(x)|\le M\),证明:
\[
\left|\int_0^af(x)\mathrm{d}x\right|\le \dfrac{M}{2}a^2
\]
证明:
\[
\int_0^af(x)\mathrm{d}x = \int_0^af(x)\mathrm{d}(x-a) = \int_0^a(a-x)f'(x)\mathrm{d}x
\]
\[
\left|\int_0^af(x)\mathrm{d}x\right| = \left|\int_0^a(a-x)f'(x)\mathrm{d}x\right| \le \int_0^a(a-x)|f'(x)|\mathrm{d}x \le \dfrac{M}{2}a^2
\]
Tip
本题用分部积分来联系函数值和导数值
增加常数让分部积分第一项等于0也是在定积分有关题目中经常使用的技巧
设 \(f\) 在 \([0,1]\) 有二阶连续导数,\(\vert f^{\prime\prime}(x)\vert\leqslant1\),\(\forall x\in[0,1]\),\(f'(0) = f'(1)\)。证明 :
\[
\left|\int_{0}^{1}f(x)\mathrm{d}x-\frac{f(0)+f(1)}{2}\right|\leqslant\frac{1}{24}
\]
我们注意到:
\[
\left|\int_{0}^{1}f(x)\mathrm{d}x-\frac{f(0)+f(1)}{2}\right|=\left|\int_{0}^{1}f(x)d\left(x-\frac{1}{2}\right)-\frac{f(0)+f(1)}{2}\right|
\]
\[
=\left|\int_{0}^{1}\left(x-\frac{1}{2}\right)f^{\prime}(x)\mathrm{d}x\right|
\]
\[
=\frac{1}{2}\left|\int_{0}^{1}f^{\prime}(x)d\left(x-\frac{1}{2}\right)^{2}\right|
\]
\[
=\frac{1}{2}\left|\int_{0}^{1}f^{\prime\prime}(x)\left(x-\frac{1}{2}\right)^{2}\mathrm{d}x\right|
\]
\[
\leqslant\frac{1}{2}\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2}\mathrm{d}x=\frac{1}{24}
\]
设 \(f\) 在 \([0,1]\) 有一阶导数且 \(|f'(x) - f'(y)| \leq |x - y|\),证明:
\[
\left|\int_{0}^{1} f(x)\mathrm{d}x - \frac{f(0) + f(1)}{2}\right| \leq \frac{1}{12}.
\]
证明:
\[
\left|\int_{0}^{1} f(x)\mathrm{d}x - \frac{f(0) + f(1)}{2}\right| = \left|\int_{0}^{1} \left(x - \frac{1}{2}\right) f'(x)\mathrm{d}x\right|
\]
\[
= \left|\int_{0}^{1} \left(x - \frac{1}{2}\right) \left[f'(x) - f'\left(\frac{1}{2}\right)\right] \mathrm{d}x\right|
\]
\[
\leq \int_{0}^{1} \left|x - \frac{1}{2}\right|^2 \mathrm{d}x = \frac{1}{12}.
\]
利用 Taylor 展开式
设 \(f(x)\) 在 \([0,1]\) 上二阶可导,\(f''(x)\lt 0\),证明 :
\[
\int_0^1f(x^2)\mathrm{d}x\le f(\dfrac{1}{3})
\]
证明
由泰勒公式,得
\[
f(t)=f\left(\frac{1}{3}\right)+f'\left(\frac{1}{3}\right)\left(t - \frac{1}{3}\right)+\frac{f''(\xi)}{2!}\left(t - \frac{1}{3}\right)^2
\]
其中 \(\xi\) 介于 \(\dfrac{1}{3}\) 与 \(t\) 之间,从而
\[
f(x^2)\leq f\left(\frac{1}{3}\right)+f'\left(\frac{1}{3}\right)\left(x^2 - \frac{1}{3}\right)
\]
积分得
\[
\int_{0}^{1}f(x^2)\mathrm{d}x\leq f\left(\frac{1}{3}\right)
\]
设 \(f(x)\) 在 \([a,b]\) 连续可导,\(f(a) = f(b) = 0,f'(x)\le M\),证明 :
\[
\int_a^bf(x)\mathrm{d}x\le \dfrac{M}{4}(b-a)^2
\]
证明
\[
\text{ 令 } F(x)=\int_{a}^{x}f(t)\mathrm{d}t, \quad F^{\prime}(a)=F^{\prime}(b)=0, \quad F(a)=0, \quad F(b)=\int_{a}^{b}f(x)\mathrm{d}x.
\]
\[
F\left(\frac{a + b}{2}\right)=F(a)+F^{\prime}(a)\left(\frac{a + b}{2}-a\right)+\frac{F^{\prime \prime}(\xi_{1})}{2!}\left(\frac{a + b}{2}-a\right)^{2}
\]
\[
F\left(\frac{a + b}{2}\right)=F(b)+F^{\prime}(b)\left(\frac{a + b}{2}-b\right)+\frac{F^{\prime \prime}(\xi_{2})}{2!}\left(\frac{a + b}{2}-b\right)^{2}
\]
\[
\Rightarrow 0=\int_{a}^{b}f(x)\mathrm{d}x+\frac{(b - a)^{2}}{8}\left[F^{\prime \prime}(\xi_{2})-F^{\prime \prime}(\xi_{1})\right]
\]
\[
\Rightarrow\left|\int_{a}^{b}f(x)\mathrm{d}x\right|=\frac{(b - a)^{2}}{8}\left|F^{\prime \prime}(\xi_{2})-F^{\prime \prime}(\xi_{1})\right|\leq\frac{M}{4}(b - a)^{2} \text{. 证毕!}
\]
利用积分与求和统一
设 \(f'(x)\) 在 \([0,1]\) 上连续,\(|f'(x)|\le M\),证明:
\[
\left|\int_0^1f(x)\mathrm{d}x-\dfrac{1}{n}\sum_{k=1}^{n}f\left(\dfrac{k}{n}\right)\right|\le \dfrac{M}{2n}
\]
证明:
\[
\left|\int_{0}^{1} f(x)\mathrm{d}x - \frac{1}{n} \sum_{k = 1}^{n} f\left(\frac{k}{n}\right)\right| = \left|\sum_{i = 1}^{n} \int_{\frac{i - 1}{n}}^{\frac{i}{n}} f(x)\mathrm{d}x - \sum_{i = 1}^{n} \int_{\frac{i - 1}{n}}^{\frac{i}{n}} f\left(\frac{i}{n}\right)\mathrm{d}x\right|
\]
用 Lagrange 中值定理
\[
\le \sum_{i = 1}^{n} \int_{\frac{i - 1}{n}}^{\frac{i}{n}} \left|f(x) - f\left(\frac{i}{n}\right)\right|\le \sum_{i = 1}^{n} \int_{\frac{i - 1}{n}}^{\frac{i}{n}} M\left(\dfrac{i}{n}-x\right)\mathrm{d}x = \dfrac{M}{2n}
\]
Tip
把积分变成求和,把求和变成积分,统一以后用拉格朗日。
Cauchy 不等式
Cauchy 不等式
设 \(f(x)、g(x)\) 在 \([a,b]\) 上连续,我们有柯西不等式:
\[
\int_a^bf^2(x)\mathrm{d}x\int_a^bg^2(x)\mathrm{d}x\ge\left(\int_a^bf(x)g(x)\mathrm{d}x\right)^2
\]
证明 : 方法很多,这里构造积分上限函数
\[
F(x)=\int_{a}^{x} f^2(t)\mathrm{d}t\cdot \int_{a}^{x} g^2(t)\mathrm{d}t - \left(\int_{a}^{x} f(t)g(t) \mathrm{d}t\right)^2, \quad F(a) = 0.
\]
\[
\Rightarrow F^{\prime}(x)= f^2(x)\cdot \int_{a}^{x} g^2(t)\mathrm{d}t + \int_{a}^{x} f^2(t)\mathrm{d}t\cdot g^2(x) - 2\cdot \int_{a}^{x} f(t)g(t)\mathrm{d}t\cdot f(x)\cdot g(x)
\]
\[
=\int_{a}^{x} \left(f^2(x)g^2(t)+f^2(t)g^2(x)-2f(t)g(t)f(x)g(x)\right) \mathrm{d}t=\int_{a}^{x} \left(f(x)g(t)-f(t)g(x)\right)^2 \mathrm{d}t \geq 0
\]
\[
\Rightarrow F(x) \geq F(a) = 0. 证毕!
\]
设 \(f'(x)\) 在 \([0,1]\) 连续,且 \(f(1)-f(0)=1\),证明:
\[
\int_0^1(f'(x))^2\mathrm{d}x\ge 1
\]
证明:
\[
\int_0^1(f'(x))^2\mathrm{d}x\int_0^1 1\mathrm{d}x\ge\left(\int_0^1f'(x)\mathrm{d}x\right)^2 = (f(1)-f(0))^2 = 1
\]