Skip to content

2024 - 2025 学年秋冬学期数学分析 ( )I(H) 第二次小测

1. 已知函数 \(f(x)\) \(\mathbb{R}\) 上处处可导,且 \(\forall x \in \mathbb{R}\)\(f(x)>0\),则 \(\lim\limits_{n \to \infty} n\ln\dfrac{f(2024+\dfrac{1}{n})}{f(2024)}=( )\)

  • A. 0
  • B. 其他都不对
  • C. \(\dfrac{f'(2024)}{f(2024)}\)
  • D. \(\ln f'(2024)\)

C

导数定义


2.( 多选 ) 设函数 \(f(x)\) \(g(x)\) 都在 \(\mathbb{R}\) 上可导,且 \(g'(x)\) \(\mathbb{R}\) 上恒不为 0,则以下命题正确的是 ( )

  • A. \(g(x)\) \(\mathbb{R}\) 上严格单调函数
  • B. \(\lim\limits_{x \to 0} f(x)=\lim\limits_{x \to 0} g(x)=0\),则 \(\lim\limits_{x \to 0} \dfrac{f(x)}{g(x)}=\lim\limits_{x \to 0} \dfrac{f'(x)}{g'(x)}\)
  • C. 若在 \(\mathbb{R}\) 上恒有 \(f(x) \geq g(x)\),则在 \(\mathbb{R}\) 上恒有 \(f'(x) \geq g'(x)\)
  • D. \(\sup_{x \in \mathbb{R}}|f'(x)|<+\infty\),则 \(f(x)\) \(\mathbb{R}\) 上一致连续

AD

A 达布定理,D 拉格朗日 B选项后面那个极限可能不存在

\(f(x) = x^2\sin(\dfrac{1}{x}),g(x) = \sin x\)

\(\lim\limits_{x\to0}\dfrac{f(x)}{g(x)} = 0,\dfrac{f'(x)}{g'(x)} = \dfrac{2x\sin(\dfrac{1}{x})-\cos(\dfrac{1}{x})}{\cos x}极限不存在\)


3. 设函数 \(f(x)\) 定义在 \(\mathbb{R}\) 上,满足方程 \(f^{\prime \prime}(x)+(f'(x))^{2}=e^{x}\) \(f'(0)=0\),则有 ( )

  • A. \(x = 0\) 不是 \(f\) 的极值
  • B. \(x = 0\) \(f\) 的极大值
  • C. \(x = 0\) \(f\) 的极小值
  • D. \((0, f(0))\) 是曲线 \(y = f(x)\) 的拐点

C

\(f''(0) = 1,f'(0) = 0\)

某点导数大于 0 的一个结论

\(若g(x)在0附近可导,g'(0)>0\iff\lim\limits_{x\to0}\dfrac{g(x)-g(0)}{x}>0\)

\((极限保号性)\Rightarrow\exists\delta>0\) \(x\in(0,\delta),g(x)>g(0). x\in(-\delta,0),g(x)<g(0)\)

但是得不到 \(g(x)\) \((0,1)\) 上单调递增

原因是:单调递增 \(\Leftarrow\forall x,y\in(0,1),(x-y)(g(x)-g(y))\gt0\)

\(x,y\) 都是任意变量,而我们得到的不等关系有一个是固定的 0


4. \(f(x)\) \(x = 0\) 点的某个邻域内有定义,且在 \(x = 0\) 点处连续。则以下命题正确的个数为 ( )

(1) \(f\) \(x = 0\) 点处可导,则 \(\lim\limits_{h \to 0} \dfrac{f(2h)-f(h)}{h}=f'(0)\)

(2) \(\lim\limits_{h \to 0} \dfrac{f(2h)-f(h)}{h}=0\),则 \(f'(0)=0\)

(3) \(f\) \(x = 0\) 点处可导,则 \(\lim\limits_{h \to 0} \dfrac{f(h)-f(-h)}{h}=2f'(0)\)

(4) \(\lim\limits_{h \to 0} \dfrac{f(h)-f(-h)}{h}=0\),则 \(f'(0)=0\)

  • A. 3
  • B. 4
  • C. 1
  • D. 2

A

对于 (1)(3) \(令f(x) = x快速求解\)

对于 (2)

\(\forall \varepsilon>0, \exists\delta > 0\), \(|x| < \delta\) ,

\[ -\frac{\varepsilon}{2} < \frac{f(2x) - f(x)}{x} < \frac{\varepsilon}{2} \]

特别地 , \(x_n = \dfrac{x}{2^n} (k \in \mathbb{N})\), 上式亦成立 . 故有

\[\frac{1}{2^k}\left(- \frac{\varepsilon}{2}\right) < \frac{f\left(\frac{x}{2^{k-1}}\right) - f\left(\frac{x}{2^k}\right)}{x} < \frac{1}{2^k}\left(\frac{\varepsilon}{2}\right),\]

\(k=1,2,\cdots,n\). 将此 n 式相加 , 注意

\[\sum_{k=1}^{n} \left[f\left(\frac{x}{2^{k-1}}\right) - f\left(\frac{x}{2^k}\right)\right] = f(x) - f\left(\frac{x}{2^n}\right) = f(x) - f(x_n), \quad \sum_{k=1}^{n} \frac{1}{2^k} = 1 - \frac{1}{2^n},\]

\[\left(1 - \frac{1}{2^n}\right)\left(- \frac{\varepsilon}{2}\right) < \frac{f(x) - f(x_n)}{x} < \left(1 - \frac{1}{2^n}\right)\left(\frac{\varepsilon}{2}\right).\]

再令 \(n \to \infty\), 取极限 , 这时 \(x_n = \dfrac{x}{2^n} \to 0\), \(f\) \(0\) 处连续 , \(\lim\limits_{n \to \infty} f(x_n) = f(0)\),

\[-\frac{\varepsilon}{2} \leq \frac{f(x) - f(0)}{x} \leq \frac{\varepsilon}{2}.\]

\[\left|\frac{f(x) - f(0)}{x} - 0\right| \leq \frac{\varepsilon}{2} < \varepsilon, \quad f'(0) \text{ 存在且 } f'(0) = 0.\]

5. 下列函数中,在 \(x = 0\) 处不可导的是 ( )

  • A. \(f(x)=|x| \sin x\)
  • B. \(f(x)=x \cos |x|\)
  • C. \(f(x)=\cos |x|\)
  • D. \(f(x)=(1 - x) \sin |x|\)

D 导数定义


6.( 多选 ) 下述命题中正确的有 ( )

  • A. \(f(x)=\dfrac{1}{x^{2}-4}\),则 \(f^{(2024)}(3)=-\dfrac{(2024)!}{4}\left(1-\dfrac{1}{5^{2025}}\right)\)
  • B. \(\dfrac{\pi}{e}>\dfrac{\pi^{e}}{e^{\pi}}\)
  • C. 方程 \(\ln x-\dfrac{x}{e}+100=0\) 恰有两个正实根
  • D. 若函数 \(f(x)\) \((0,1)\) 上可导且有界,则导函数 \(f'(x)\) \((0,1)\) 上必有界

A 多了一个负号

\(\pi^{e-1}<e^{\pi-1}\iff(e-1)\ln\pi<(\pi-1)\ln e\) \(f(x) = \dfrac{\ln x}{x-1},f'(x) = \dfrac{1-\dfrac{1}{x}-\ln x}{(x-1)^2}\le 0\)

D \(f(x) = \sin(\dfrac{1}{x}),f'(x) = -\dfrac{1}{x^2}\cos(\dfrac{1}{x})\)

BC


7. 极坐标系下的曲线 \(C: r = 2\cos\theta\) \(\theta=\dfrac{\pi}{3}\) 处的切线方程为 ( )

  • A. \(x+\sqrt{3}y - 1 = 0\)
  • B. \(x-\sqrt{3}y - 1 = 0\)
  • C. \(x-\sqrt{3}y + 1 = 0\)
  • D. \(x+\sqrt{3}y + 1 = 0\)

C

\((\dfrac{1}{2},\dfrac{\sqrt{3}}{2})\)


8. 设二阶可导函数 \(y = y(x)\) 由方程 \(e^{x}-e^{y}=xy + 1 - e\) 确定,则 \(y^{\prime \prime}(0)=( )\)

  • A. 1
  • B. 0
  • C. \(\dfrac{1}{e}\)
  • D. \(-1 - e\)

C

\(y(0) = 1\) \(e^x-e^yy' = y+xy'\Rightarrow y'(0) = 0\)

\(e^x-e^y(y')^2-e^yy'' = 2y'+ xy''\Rightarrow y''(0) = \dfrac{1}{e}\)


9.( 多选 ) \(f(x)\) \((0,+\infty)\) 上有界且可导,则下述结论错误的有 ( )

  • A. \(\lim\limits_{x \to +\infty} f(x)=0\),则必有 \(\lim\limits_{x \to +\infty} f'(x)=0\)
  • B. \(\lim\limits_{x \to 0^+} f(x)=0\),则必有 \(\lim\limits_{x \to 0^+} f'(x)=0\)
  • C. \(\lim\limits_{x \to +\infty} f'(x)\) 存在,则必有 \(\lim\limits_{x \to +\infty} f'(x)=0\)
  • D. \(\lim\limits_{x \to 0^+} f(x)\) 存在,则必有 \(\lim\limits_{x \to 0^+} f'(x)=0\)

ABD

注意 A \(f(x) = \dfrac{\sin(x^2)}{x},f'(x) = \dfrac{2x^2\cos(x^2)-\sin(x^2)}{x^2}\)

C \(设f'(+\infty) = k\neq 0, f(2x)-f(x) = xf'(\xi)\to+\infty(x\to+\infty)\)


10. \(f(x)=x^{3}\left(\sin\dfrac{1}{x}-\ln\left(1+\dfrac{1}{x}\right)\right)-\dfrac{x}{2}\),则 \(\lim\limits_{x \to \infty} f(x)=( )\)

  • A. \(-\dfrac{1}{2}\)
  • B. \(-\dfrac{1}{6}\)
  • C. \(\dfrac{1}{2}\)
  • D. \(\dfrac{1}{6}\)

C

Taylor 公式 \(-\dfrac{1}{6} - \dfrac{1}{3} = -\dfrac{1}{2}\)