Skip to content

泰勒展开或者构造辅助多项式

2020 微积分甲期末考 12

\(f\) \([0,1]\) 上二阶可导,且满足 \(f(0)=0=f(1)\)\(\min\limits_{x\in[0,1]} f(x)=-1\),试证明:\(\exists x_0\in(0,1)\),使得 \(f''(x_0)\geq8\)

Answer1

解法一:用 Taylor 展开

证明:设 \( f(x) \) \( x = a \in (0,1) \) 处取得最小值,则 \( f(a) = -1,f'(a) = 0 \)

利用泰勒公式:\( f(x) = f(a)+f'(a)(x - a)+\dfrac{f''(\xi)}{2!}(x - a)^2=-1+\dfrac{f''(\xi)}{2!}(x - a)^2 \)

分别令 \( x = 0,x = 1 \)

\(f''(\xi_1) = \dfrac{2}{a^2},f''(\xi_2) = \dfrac{2}{(1 - a)^2}\)

\(f''(\xi) = \max\{f''(\xi_1),f''(\xi_2)\}\),则有 \(f''(\xi) \geq f''(\xi_1) ,f''(\xi) \geq f''(\xi_2)\)

故有 \([f''(\xi)]^2 \geq f''(\xi_1)f''(\xi_2) = \dfrac{8}{a^2(1 - a)^2} \geq 64 \Rightarrow f''(\xi) \geq 8\)

Answer2

构造辅助多项式

解:令 \( F(x)=f(x)-p(x) =f(x)-4x^{2}+4x \Rightarrow F(0)=F(1)=0 ,p(x)=4x^{2}-4x \)

假设 \( f(x) \) \( x = c \) 处取得最小值,即 \( f(c)=-1 ,p\left(\dfrac{1}{2}\right)=-1 \)

\( c=\dfrac{1}{2} \Rightarrow F(c)=F\left(\dfrac{1}{2}\right)=f\left(\dfrac{1}{2}\right)-P\left(\dfrac{1}{2}\right)=0 \Rightarrow F(0)=F(1)=F(c) = 0 \)

由罗尔定理,\(\exists \xi \in (0,1) \),s.t. \( f''(\xi)=8 \geq 8 \),证毕。

\( c\neq\dfrac{1}{2} \Rightarrow F(c)=f(c)-p(c)<0 \)\( F\left(\dfrac{1}{2}\right)=f\left(\dfrac{1}{2}\right)-p\left(\dfrac{1}{2}\right)>0 \)

由介值定理,\(\exists x_{0} \in (0,1) \),s.t. \( F(x_{0})=0 \Rightarrow F(0)=F(x_{0})=F(1)=0 \)

由罗尔定理,\(\exists \xi \in (0,1) \),s.t. \( f''(\xi)=8 \geq 8 \),证毕。