周期函数积分的平均 ¶
2020 微积分甲期末考试第 9 题
设 \(f\) 在 \(\mathbb{R}\) 上连续,且以 \(T(> 0)\) 为周期
(1) 试证明函数
\[F(x)=\int_{0}^{x}f(t)dt - \frac{x}{T}\int_{0}^{T}f(u)du\]
以 \(T\) 为周期;
(2) 试证明
\[\lim_{x \to +\infty} \frac{1}{x}\int_{0}^{x}f(t)dt = \frac{1}{T}\int_{0}^{T}f(u)du\]
(3) 试求极限
\[\lim_{x \to +\infty} \dfrac{1}{x}\int_{0}^{x}|\sin t|dt\]
(1) 证明:
\[F(x + T)=\int_{0}^{x + T}f(t)dt-\frac{x + T}{T}\int_{0}^{T}f(t)dt\]
\[=\int_{0}^{x}f(t)dt+\int_{x}^{x + T}f(t)dt-\frac{x}{T}\int_{0}^{T}f(t)dt-\int_{0}^{T}f(t)dt\]
\[=\int_{0}^{x}f(t)dt+\int_{0}^{x}f(t)dt-\frac{x}{T}\int_{0}^{T}f(t)dt-\int_{0}^{T}f(t)dt\]
\[=\int_{0}^{x}f(t)dt-\frac{x}{T}\int_{0}^{T}f(t)dt=F(x)\]
(2) 要证
\[\lim_{x\rightarrow+\infty}\frac{1}{x}\int_{0}^{x}f(t)dt=\frac{1}{T}\int_{0}^{T}f(t)dt\]
\[\iff\lim_{x\rightarrow+\infty}\left[\frac{1}{x}\int_{0}^{x}f(t)dt-\frac{1}{T}\int_{0}^{T}f(t)dt\right]=0\]
\[\iff\lim_{x\rightarrow+\infty}\frac{F(x)}{x}=0\]
由 \(F(x)\) 是以 \(T\) 为周期的连续函数,故有界。有界函数乘以无穷小还是无穷小,故结论成立
(3) 取 \(f(x) = |\sin x|, T = \pi\)
\[\lim_{x \to +\infty} \dfrac{1}{x}\int_{0}^{x}|\sin t|dt = \dfrac{1}{\pi}\int_0^{\pi}|\sin x|dx = \dfrac{2}{\pi}\]
一些相似题
此类题亦可通过分区间讨论 + 夹逼准则来解决
题 1( 东京大学 2023 年入学试题 )
\(对于k\in N^+,记\)
\[
A_k = \int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|\mathrm{d}x
\]
\((1)证明:\dfrac{1}{\sqrt{(k+1)\pi}}\le A_k\le\dfrac{1}{\sqrt{k\pi}}\)
\((2)对于n\in N^+,记\)
\[
B_n = \dfrac{1}{\sqrt{n}}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|\mathrm{d}x
\]
\(求\lim\limits_{n\to\infty}B_n\)
题 2
\[\lim\limits_{x\to+\infty}\dfrac{1}{x^2}\int_0^xt|\sin t|\mathrm{d}t\]
解答在我以前的博客里