Skip to content

具体函数的中值极限

卢兴江课本习题 6-8

6-8. 对函数 \( f(x) = e^{x^{2}} \) 在区间 \([0,x]\) (\(x > 0\)) 上应用积分中值定理,有

\[ \int_{0}^{x} e^{t^{2}} \mathrm{d}t = x e^{\theta(x)x^{2}} \]

其中 \(\theta(x) \in (0,x)\)

计算 \(\lim\limits_{x \to 0^{+}} \theta(x)\) \(\lim\limits_{x \to +\infty} \theta(x)\)

Tip

这种具体函数的中值极限问题,直接求出 \(\theta(x)\) 的表达式

归为极限计算问题以后,就用那一套方法,比如等价代换,泰勒,洛必达

\[ \theta(x) = \dfrac{1}{x^2}\ln\left(\dfrac{1}{x}\int_0^x e^{t^2}\mathrm{d}t\right) \]

\(x\to0\) 时,用等价无穷小 \(\ln(1+x)\sim x\)

\[ \lim\limits_{x \to 0^{+}} \theta(x) = \lim\limits_{x \to 0^{+}} \dfrac{1}{x^2}\left(\dfrac{1}{x}\int_0^x e^{t^2}\mathrm{d}t-1\right) = \dfrac{\int_0^x e^{t^2}\mathrm{d}t-x}{x^3} = \dfrac{1}{3}(洛必达法则) \]

\(x\to+\infty\)

\[ \lim\limits_{x \to +\infty} \theta(x) = \lim\limits_{x \to +\infty} \dfrac{1}{x^2}\left[\ln\left(\dfrac{1}{x}\right)+\ln\left(\int_0^x e^{t^2}\mathrm{d}t\right)\right] \]
\[ = \lim\limits_{x \to +\infty} \dfrac{e^{x^2}}{2x\int_0^x e^{t^2}\mathrm{d}t} = \lim\limits_{x \to +\infty} \dfrac{2xe^{x^2}}{2\int_0^x e^{t^2}\mathrm{d}t+2xe^{x^2}} = 1(洛必达法则) \]