Skip to content

20241209

通过构造积分上限函数,运用分部积分法,以退为进,证明原函数有 k+1 个零点,再通过罗尔定理证明要求解的函数有 k 个零点

1

卢兴江老师微积分课本习题 6.51

\(f(x)\) \([0,1]\) 连续,且

\[ \displaystyle\int_0^1 f(x)\mathrm{d}x = \displaystyle\int_0^1 xf(x)\mathrm{d}x = 0 \]

求证:\(f(x)\) \((0,1)\) 至少有 2 个零点

证明:

\(F(x) = \displaystyle\int_0^x f(t)\mathrm{d}t\),则 \(F(0) = F(1) = 0\)

\[ 0 = \displaystyle\int_0^1 xf(x)\mathrm{d}x = \displaystyle\int_0^1 x\mathrm{d}F(x) = xF(x)\bigg|_0^1 - \displaystyle\int_0^1 F(x)\mathrm{d}x \]

\(\Rightarrow \displaystyle\int_0^1 F(x)\mathrm{d}x = 0\)

由积分中值定理,\(\exists c\in(0,1),\) s.t. \((1-0)F(c) = 0\) \(\Rightarrow F(0) = F(1) = F(c) = 0\),由罗尔定理即证。


2

\(f(x)\) \([0,\pi]\) 连续,且

\[ \displaystyle\int_0^\pi f(x)\sin x\mathrm{d}x = \displaystyle\int_0^\pi f(x)\cos x\mathrm{d}x = 0 \]

求证:\(f(x)\) \((0,\pi)\) 至少有 2 个零点

证明:

\(F(x) = \displaystyle\int_0^x f(t)\sin t\mathrm{d}t\),则 \(F(0) = F(\pi) = 0\)

\(\lim\limits_{x\to0^+}\dfrac{F(x)}{\sin x} = \lim\limits_{x\to0^+}f(x)\sin x = 0\)( 洛必达法则 )

同理 \(\lim\limits_{x\to\pi^-}\dfrac{F(x)}{\sin x} = 0\)

\[ 0 = \displaystyle\int_0^\pi f(x)\cos x\mathrm{d}x = \displaystyle\int_0^\pi \dfrac{\cos x}{\sin x}f(x)\sin x\mathrm{d}x = \displaystyle\int_0^\pi \dfrac{\cos x}{\sin x}\mathrm{d}F(x) \]
\[ = \dfrac{F(x)}{\sin x}\bigg|_{0^+}^{\pi^-} - \displaystyle\int_0^\pi F(x)\mathrm{d}\left(\dfrac{\cos x}{\sin x}\right) = \displaystyle\int_0^\pi F(x)\dfrac{1}{\sin^2x}\mathrm{d}x \]

由积分中值定理,\(\exists c\in(0,\pi),\) s.t. \((\pi-0)F(c)\dfrac{1}{\sin^2c} = 0\Rightarrow F(c) = 0\)

\(\Rightarrow F(0) = F(\pi) = F(c) = 0\),由罗尔定理即证。

另解

\(f(x)\) 恒为零则结论显然

\(f(x)\) 恒非负或恒非正,又 \(\sin x > 0(x\in(0,\pi))\),与 \(\displaystyle\int_0^\pi f(x)\sin x\mathrm{d}x = 0\) 矛盾

\(\Rightarrow f(x)\) 有正有负,即存在零点

\(f(x)\) 只有一个零点,设为 \(x_0\),则

\[ \displaystyle\int_0^\pi f(x)\sin(x-x_0)\mathrm{d}x \neq 0 \]

但是,

\[ \displaystyle\int_0^\pi f(x)\sin(x-x_0)\mathrm{d}x = \displaystyle\int_0^\pi f(x)\sin x\cos x_0\mathrm{d}x - \displaystyle\int_0^\pi f(x)\cos x\sin x_0\mathrm{d}x = 0 \]

矛盾,所以 \(f(x)\) 至少有 2 个零点