Skip to content

模拟题分析与解答

依照【考情分析,我给同学模拟了一些题目。1-8 为计算题,9 为综合计算题,10-12 为综合分析题

题号 知识点
1 夹逼准则求极限
2 等价无穷小、泰勒展开或中值定理求极限
3 参数方程求导及导数定义
4 复合函数求导及导数定义
5 有理函数的不定积分、分部积分法
6 利用定积分定义求极限
7 定积分的几何应用 - 求曲线弧长
8 反常积分
9 定积分的几何应用 - 求旋转体体积
10 递推数列极限综合题
11 微分中值定理综合题(主要考察泰勒展开)
12 函数与积分综合题(考察导数与单调性、积分不等式)

纵观历年的考卷,基本方法求极限方法如等价无穷小,恒等变形,夹逼准则,泰勒展开式,洛必达法则,定积分定义是考察的热点,我据此选了 1,2,6

函数部分,不是考察的热点,偶尔会有题目考察渐近线,零点存在性定理,因此我没有单独出题,但是我把反函数,介值定理等知识点融入了第 811 题中

导数部分,主要考察导数定义,复合函数求导,参数方程求导,隐函数求导,高阶导数计算,我选了 34

微分中值定理部分,我选了一个常规的泰勒展开题 (11)

积分部分,不定积分选了一个题 (5),综合考察有理函数积分换元法和分部积分法。定积分的几何应用是期末考试的必考题,包括求弧长,面积,体积(7,9)。反常积分部分选了一个题和反函数结合考察(8,定积分综合题和函数与导数结合考察(12)

10-12 难度较大,但是我均做了铺垫。总体来说这张模拟卷的难度要高于期末考试,毕竟模拟总要难一点(别打我 QWQ

参考答案

1. 计算极限

\[ \lim\limits_{x\to0}\dfrac{\sin(x^2\sin\dfrac{1}{x})}{x} \]

Answer

\[ 0 \leq \dfrac{\left|\sin \left( x^{2} \sin \dfrac{1}{x} \right)\right|}{|x|} \leq \dfrac{\left|x^{2} \sin \dfrac{1}{x}\right|}{|x|} \leq \dfrac{\left|x^{2}\right|}{|x|} = |x| \rightarrow 0 \]
\[ \text{由夹逼准则,} \lim_{x \rightarrow 0} \dfrac{\left|\sin \left( x^{2} \sin \dfrac{1}{x} \right)\right|}{|x|} = 0, \text{ 故 } \lim_{x \rightarrow 0} \dfrac{\sin \left( x^{2} \sin \dfrac{1}{x} \right)}{x} = 0 \]

2. 计算极限

\[ \lim\limits_{x\to0}\dfrac{e^{(1+x)^{\frac{1}{x}}} - \left(1+x\right)^{\frac{e}{x}}}{x^2} \]

Answer

alt text


3. 设函数 \(y = f(x)\) 由参数方程 \(\begin{cases}x = 1 + t^{3}\\y = e^{t^{2}}\end{cases}\) 确定,求下面的极限:

\[\lim_{x\to+\infty}x\left[f\left(2+\dfrac{2}{x}\right)-f(2)\right]\]

Answer

容易看出函数 \(f(x)\) 可导,且 \(f^{\prime}(x)=\dfrac{\text{d}y}{\text{d}x}=\dfrac{e^{t^{2}} \cdot 2t}{3t^{2}}\)

\(x = 2,t = 1\) 时,\(f^{\prime}(2)=\left.\dfrac{e^{t^{2}} \cdot 2t}{3t^{2}}\right|_{t = 1}=\dfrac{2}{3}e\),所以,

\[ \lim_{x \to +\infty} x\left(f\left(2+\dfrac{2}{x}\right)-f(2)\right)=2 \lim_{x \to +\infty} \dfrac{f\left(2+\dfrac{2}{x}\right)-f(2)}{\dfrac{2}{x}}=2f^{\prime}(2) = \dfrac{4}{3}e. \]

4. \(f(x)=\displaystyle\int_{0}^{x}\cos(x - t)^{2}\text{d}t\)\(\varphi(x)=\begin{cases}\dfrac{x-\sin x}{x-\ln(1 + x)},&x\neq0\\0,&x = 0\end{cases}\),求 \(\dfrac{\mathrm{d}}{\mathrm{d}x}f(\varphi(x))\vert_{x = 0}\)

Answer

\[ \varphi^{\prime}(0)=\lim_{x \to 0} \dfrac{\varphi(x)-\varphi(0)}{x}=\lim_{x \to 0} \dfrac{x - \sin x}{x - \ln(1 + x)}=\lim_{x \to 0} \dfrac{\dfrac{1}{6}x^{3}}{\dfrac{1}{2}x^{3}}=\dfrac{1}{3} \]
\[ f(x)=\int_{0}^{x} \cos (x - t)^{2} \mathrm{d}t = \int_{0}^{x} \cos(u^{2}) \mathrm{d}u(令u = x-t) \]

\(f'(x)=\cos (x^{2}),\varphi(0) = 0\),因此 \(\left.\dfrac{\mathrm{d}f(\varphi(x))}{\mathrm{d}x}\right|_{x = 0}=f^{\prime}(\varphi(0))\cdot\varphi^{\prime}(0)=\dfrac{1}{3}\)


5. 求不定积分

\[\int\ln\left(1+\sqrt{\dfrac{1+x}{x}} \right)\text{d}x \]

Answer

\(\sqrt{\dfrac{1 + x}{x}}=t\),得 \(x = \dfrac{1}{t^{2}-1}\)

原式 \(=\displaystyle\int \ln(1 + t)\mathrm{d}(\dfrac{1}{t^{2}-1})\)

\(=\dfrac{\ln(1 + t)}{t^{2}-1}-\displaystyle\int\dfrac{1}{t^{2}-1}\cdot\dfrac{1}{t + 1}\mathrm{d}t\)

\(=\dfrac{\ln(1 + t)}{t^{2}-1}-\displaystyle\int\left(\dfrac{1}{4(t - 1)}+\dfrac{-1}{4(t + 1)}-\dfrac{1}{2(t + 1)^{2}}\right)\mathrm{d}t\)

\(=\dfrac{\ln(1 + t)}{t^{2}-1}+\dfrac{1}{4}\ln\left|\dfrac{t + 1}{t - 1}\right|-\dfrac{1}{2(t + 1)}+C\)

\(=x\ln(1+\dfrac{\sqrt{1 + x}}{x})+\dfrac{1}{4}\ln\dfrac{\dfrac{\sqrt{1 + x}}{x}+1}{\dfrac{\sqrt{1 + x}}{x}-1}-\dfrac{1}{2(\dfrac{\sqrt{1 + x}}{x}+1)}+C\)

\(=x\ln(1+\dfrac{\sqrt{1 + x}}{x})+\dfrac{1}{2}\ln(\sqrt{1 + x}+\sqrt{x})-\dfrac{1}{2}\sqrt{x}(\sqrt{1 + x}-\sqrt{x})+C\)


6. 求下面的极限

\[ \lim\limits_{n\to+\infty}\dfrac{1}{n^4}\prod\limits_{k = 1}^{2n}(n^2+k^2)^{\frac{1}{n}} \]

Answer

alt text


7. 求曲线 \(f(x) = \displaystyle\int_{-\sqrt{3}}^x\sqrt{3-t^2}\mathrm{d}t\) 的弧长

Answer

\(y^{\prime}=\sqrt{3 - x^{2}}\),由弧长公式可得

\[l = \int_{-\sqrt{3}}^{\sqrt{3}}\sqrt{1 + (y^{\prime })^2}\mathrm{d}x=\int_{-\sqrt{3}}^{\sqrt{3}}\sqrt{4 - x^{2}}\mathrm{d}x = 2\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}2\cos^{2}t\mathrm{d}t(令x = 2\sin t)\]
\[= 2\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}(1 + \cos 2t)\mathrm{d}t=\sqrt{3}+\dfrac{4}{3}\pi\]

8. \(f(x)=\dfrac{1}{x + \sqrt{1 + x^{2}}}\),其反函数记作 \(f^{-1}(x)\),求 \(\displaystyle\int_{\sqrt{2}-1}^{1}f^{-1}(x)\mathrm{d}x\)

Warning

1226 勘误,原题有误,已更正

Answer

解 令 \(y = f^{-1}(x)\),则 \(x = f(y)\),故

\[ \int_{\sqrt{2}-1}^{1} f^{-1}(x) \mathrm{d}x=\int_{1}^{0} y \mathrm{d}f(y)=y f(y)\left.\right|_{1} ^{0}-\int_{1}^{0} f(y) \mathrm{d}y \]
\[ =-\dfrac{1}{\sqrt{2}+1}+\int_{0}^{1} \dfrac{1}{y+\sqrt{1+y^{2}}} \mathrm{d}y=(1-\sqrt{2})+\int_{0}^{1}\left(\sqrt{1+y^{2}}-y\right) \mathrm{d}y \]
\[ =(1-\sqrt{2})+\left.\dfrac{1}{2} y \sqrt{1+y^{2}}\right|_{0} ^{1}+\left.\dfrac{1}{2} \ln \left(y+\sqrt{1+y^{2}}\right)\right|_{0} ^{1}-\dfrac{1}{2}=\dfrac{1}{2}(1-\sqrt{2})+\dfrac{1}{2} \ln (1+\sqrt{2}) \]

9. \(t > 0\),平面有界区域 \(D\) 由曲线 \(y = \sqrt{x}e^{-x}\) 与直线 \(x = t\)\(x = 2t\) \(x\) 轴围成,\(D\) \(x\) 轴旋转一周所成旋转体的体积为 \(V(t)\),求 \(V(t)\) 的最大值。

Answer

\(V(t)=\displaystyle\int_{t}^{2t}\pi x e^{-2x}\mathrm{d}x=-\dfrac{\pi}{2}\left[(2t + \dfrac{1}{2})e^{-4t}-(t + \dfrac{1}{2})e^{-2t}\right]\)

\(V^{\prime}(t)=-\pi te^{-2t}(1 - 4e^{-2t})\),令 \(V^{\prime}(t)=0\Rightarrow t=\ln 2\)

\(\because t\in(\ln 2-\delta,\ln 2)\) \(V^{\prime}(t)>0\)\(t\in(\ln 2,\ln 2+\delta)\) \(V^{\prime}(t)<0\)

\(\therefore t = \ln 2\) \(V(t)\) 的极大值点即最大值点,

故最大值为 \(V(\ln 2)=\dfrac{\pi}{16}(\ln 2+\dfrac{3}{4})\)


10. \((1+\sqrt{3})^n = a_n+\sqrt{3}b_n(a_n,b_n\in\mathbb{N}^+)\)

(1) 证明 :\(a_{n+1} = a_n+3b_n,b_{n+1} = a_n+b_n\)

(2) \(\lim\limits_{n\to+\infty}\dfrac{a_n}{b_n}\)

Answer

(1)\((1+\sqrt{3})^{n+1} = (1+\sqrt{3})(a_n+\sqrt{3}b_n) = (a_n+3b_n)+(a_n+b_n)\sqrt{3} = a_{n+1}+b_{n+1}\sqrt{3}\)

\(\therefore a_{n+1} = a_n+3b_n,b_{n+1} = a_n+b_n\)

(2)\(\dfrac{a_{n+1}}{b_{n+1}} = \dfrac{a_n+3b_n}{a_n+b_n}令c_n = \dfrac{a_n}{b_n}\Rightarrow c_{n+1} = \dfrac{c_n+3}{c_n+1}\Rightarrow c_n\ge1(n\ge2)\)

\(|c_{n+1}-\sqrt{3}| = \left|\dfrac{(1-\sqrt{3})c_n+3-\sqrt{3}}{c_n+1}\right| = \left|\dfrac{(\sqrt{3}-1)(c_n-\sqrt{3})}{c_n+1}\right|\le\dfrac{\sqrt{3}-1}{2}|c_n-\sqrt{3}|\)

\(\therefore0\le|c_{n}-\sqrt{3}|\le\dfrac{\sqrt{3}-1}{2}|c_{n-1}-\sqrt{3}|\le\left(\dfrac{\sqrt{3}-1}{2}\right)^2|c_{n-2}-\sqrt{3}|\le ...\le \left(\dfrac{\sqrt{3}-1}{2}\right)^{n-2}|c_2-\sqrt{3}|\to0(n\to+\infty)\)

\(\therefore\lim\limits_{n\to+\infty}\dfrac{a_n}{b_n} = \lim\limits_{n\to+\infty}c_n = \sqrt{3}\)


11. 设函数 \(f(x)\) \([-a,a]\) 上具有二阶连续导数,证明:

(1) \(f(0)=0\),则存在 \(\xi\in(-a,a)\),使得 \(f^{\prime\prime}(\xi)=\dfrac{1}{a^{2}}[f(a)+f(-a)]\)

(2) \(f(x)\) \((-a,a)\) 内取得极值,则存在 \(\eta\in(-a,a)\) 使得 \(\left|f^{\prime\prime}(\eta)\right|\geqslant\dfrac{1}{2a^{2}}\left|f(a)-f(-a)\right|\)

Answer

(1) 由泰勒公式,有

\[ f(a)=f(0)+f^{\prime}(0)a+\dfrac{1}{2}f^{\prime\prime}(\eta_{1})a^{2},\eta_{1}\in(0,a) \]
\[ f(-a)=f(0)-f^{\prime}(0)a+\dfrac{1}{2}f^{\prime\prime}(\eta_{2})a^{2},\eta_{2}\in(-a,0) \]

由于 \(f(0) = 0\),所以 \(f(a)+f(-a)=\dfrac 1 2(f^{\prime\prime}(\eta_{1})a^{2}+f^{\prime\prime}(\eta_{2})a^{2})\)

由介值定理 :\(\exists\xi\in(-a,a),f''(\xi) = \dfrac{1}{2}(f''(\xi_1)+f''(\xi_2))\)

因此 ,

\[ f^{\prime\prime}(\xi)=\dfrac{1}{a^{2}}(f(a)+f(-a)) \]

(2) \(x_0\) 处将 \(f(x)\) 展开

\[ f(x)=f(x_0)+f^{\prime}(x_0)(x - x_0)+\dfrac{f^{\prime\prime}(\gamma)}{2}(x - x_0)^2=f(x_0)+\dfrac{f^{\prime\prime}(\gamma)}{2}(x - x_0)^2,\gamma \text{介于}0\text{与}x\text{之间} \]

\[ f(-a)=f(x_0)+\dfrac{f^{\prime\prime}(\gamma_1)}{2}(-a - x_0)^2,-a < \gamma_1 < 0 \]
\[ f(a)=f(x_0)+\dfrac{f^{\prime\prime}(\gamma_2)}{2}(a - x_0)^2,0 < \gamma_2 < a \]

从而

\[ |f(a)-f(-a)|=\left|\dfrac{1}{2}(a - x_0)^2f^{\prime\prime}(\gamma_2)-\dfrac{1}{2}(a + x_0)^2f^{\prime\prime}(\gamma_1)\right| \]
\[ \leq\dfrac{1}{2}\left|(a - x_0)^2f^{\prime\prime}(\gamma_2)\right|+\dfrac{1}{2}\left|(a + x_0)^2f^{\prime\prime}(\gamma_1)\right| \]

\(\left|f^{\prime\prime}(x)\right|\) 连续,设 \(|f''(\eta)| = M = \max\left\{\left|f^{\prime\prime}(\gamma_1)\right|,\left|f^{\prime\prime}(\gamma_2)\right|\right\}\),则

\[ |f(a)-f(-a)|\leq\dfrac{1}{2}M(a + x_0)^2+\dfrac{1}{2}M(a - x_0)^2 = M(a^2 + x_0^2) \]

\(x_0\in(-a,a)\),则 \(|f(a)-f(-a)|\leq M(a^2 + x_0^2)\leq 2Ma^2\)

\(M\geq\dfrac{1}{2a^2}|f(a)-f(-a)|\),即存在 \(\eta=\gamma_1\text{或}\eta=\gamma_2\in(-a,a)\)

\(\left|f^{\prime\prime}(\eta)\right|\geq\dfrac{1}{2a^2}|f(a)-f(-a)|\)


12. 设函数 \(f(x)\) 具有二阶导数,且 \(\vert f^{\prime\prime}(x)\vert\leq1\)

(1) 证明: 当 \(x\in(0,1)\) 时,\(\Big\vert f(x)-f(0)(1 - x)-f(1)x\Big\vert\leq\dfrac{x(1 - x)}{2}\)

(2) 证明:

\[\left\vert\int_{0}^{1}f(x)\mathrm{d}x-\dfrac{f(0)+f(1)}{2}\right\vert\leq\dfrac{1}{12}\]

Answer

(1) 证明:令 \(g(x)=f(0)(1 - x)+f(1)x\)

\(F(x)=f(x)-g(x)-\dfrac{x(1 - x)}{2}\)\(x\in(0,1)\)

\(\because F(0)=0,F(1)=0\)

\(\because F^{\prime\prime}(x)=f^{\prime\prime}(x)+1\geq0\Leftarrow\left|f^{\prime\prime}(x)\right|\leq1\)

\(\therefore F(x)\) 为下凸函数 \(\therefore F(x)\leq0\)

\(\therefore f(x)-f(0)(1 - x)-f(1)x\leq\dfrac{x(1 - x)}{2}\)

类似可证 \(\therefore f(x)-f(0)(1 - x)-f(1)x\ge-\dfrac{x(1 - x)}{2}\)

所以 \(\Big| f(x)-f(0)(1 - x)-f(1)x\Big|\leq\dfrac{x(1 - x)}{2}\)

(2) 证明:由 (1) \(f(x) - f(0)(1 - x) - f(1)x\leq\dfrac{x(1 - x)}{2}\)

\(\Rightarrow\displaystyle\int_{0}^{1}\left[f(x) - f(0)(1 - x) - f(1)x\right]\mathrm{d}x\leq\displaystyle\int_{0}^{1}\dfrac{x(1 - x)}{2}\mathrm{d}x\)

\(\Rightarrow\displaystyle\int_{0}^{1}f(x)\mathrm{d}x-\dfrac{f(0)+f(1)}{2}\leq\dfrac{1}{12}\)

(1) \(f(x) - f(0)(1 - x) - f(1)x\geq-\dfrac{x(1 - x)}{2}\)

\(\Rightarrow\displaystyle\int_{0}^{1}\left[f(x) - f(0)(1 - x) - f(1)x\right]\mathrm{d}x\geq\displaystyle\int_{0}^{1}-\dfrac{x(1 - x)}{2}\mathrm{d}x\)

\(\Rightarrow\displaystyle\int_{0}^{1}f(x)\mathrm{d}x-\dfrac{f(0)+f(1)}{2}\geq-\dfrac{1}{12}\)

综上:\(\left|\displaystyle\int_{0}^{1}f(x)\mathrm{d}x-\dfrac{f(0)+f(1)}{2}\right|\leq\dfrac{1}{12}\)