2024-2025 微积分 ( 甲 )I 期末考试部分思路 ¶
- 已知数列 \(\{a_n\},\{b_n\}\) 满足 \(e^{a_n}=a_n + e^{b_n}\),其中 \(0 < a_n < \dfrac{1}{n^2}\)。
证明 :
(1) \(0 < b_n < \dfrac{3a_n^2}{4}\)
(2) \(\lim\limits_{n \to \infty}(\dfrac{b_1}{a_1}+\dfrac{b_2}{a_2}+\cdots+\dfrac{b_n}{a_n})\) 存在。
(1)\(\iff 1<e^{b_n} = e^{a_n}-a_n < e^{\frac{3a_n^2}{4}}\)
左边显然成立 (\(e^x\ge x+1\)),下面考虑右边的不等式
由题:\(0 < a_n < \dfrac{1}{n^2}\le 1\)
\(e^{a_n}-a_n < e^{\frac{3a_n^2}{4}}\)
\(\Leftarrow e^{a_n}-a_n < \dfrac{3a_n^2}{4} +1 \le e^{\frac{3a_n^2}{4}}\)
\(\Leftarrow e^x-\dfrac{3}{4}x^2-x-1 <0, \forall x\in(0,1)\)
设 \(f(x) = e^x-\dfrac{3}{4}x^2-x-1,f'(x) = e^x-\dfrac{3}{2}x-1,f''(x) = e^x-\dfrac{3}{2}\)
\(f'(x)\) 在 \((0,1)\) 上最大值在端点处取到,\(f'(0) = 0,f'(1) = e-2.5<0\)
\(\therefore f(x)\) 在 \((0,1)\) 上递减,\(f(x)\le f(0) = 0\)
Note
我们高中肯定做过这样的导数题,\(e^x-ax^2-x-1\ge 0\) 在 \((0,+\infty)\) 恒成立,求 a 的取值范围,答案是 \(a\le \dfrac{1}{2}\)
也就是说,最佳系数是 \(\dfrac{1}{2}\),本题中用分析法发现我们要证的是 \(\dfrac{3}{4}\) 是比 \(\dfrac{1}{2}\) 大的,所以 \(f(x)\) 会在 \(0\) 右边的一小段区域先负,然后随着 x 趋于正无穷又发散到正无穷
(2) \(\dfrac{b_i}{a_i}< \dfrac{3}{4}a_i<\dfrac{3}{4i^2}, i\in \mathbb{N^+}\)
用柯西收敛定理容易证明
- 已知函数 \(f(x)\) 在区间 \([0,1]\) 上有 2 阶导数,且 \(f''(x)<0\),\(f(0)=f(1)=0\)。证明:
(1) \(f'(x)\) 在区间 \((0,1)\) 内存在唯一零点 \(x_0\),且当 \(x\in(0,1)\) 时 \(f(x)>0\)
(2) \(\exists x_1\in(0,x_0)\),\(x_2\in(x_0,1)\),使得 \(f(x_1)=f(x_2)=\dfrac{f(x_0)}{2}\),且 \(\displaystyle\int_{0}^{1}f(x)dx<f(x_0)(x_2 - x_1)\)
(1) \(f(1) = f(0) = 0 \Rightarrow \exists x_0\in(0,1), f'(x_0) = 0\)(Rolle)
\(\because f''(x)<0\) 所以一阶导数递减,\(0<x<x_0, f'(x)>0;x_0<x<1,f'(x)<0\)
\(\therefore f(x)\) 在 \((0,x_0)\) 上递增,在 \((x_0,1)\) 上递减
\(f(0) = f(1) = 0\Rightarrow f(x)>0, \forall x\in(0,1)\)
(2) 设 \(g(x) = f(x)-\dfrac{f(x_0)}{2}\)
\(g(x)\) 在 \((0,x_0)\) 上递增,在 \((x_0,1)\) 上递减
\(g(0)<0,g(x_0)>0,g(1)<0\Rightarrow\exists x_1\in(0,x_0),x_2\in(x_0,1)\)s.t. \(g(x_1) = g(x_2) = 0\)
至于第二问的不等式,本质上是比较面积大小
\(\displaystyle\int_{0}^{1}f(x)\mathrm{d}x = \left(\displaystyle\int_{0}^{x_1}+\displaystyle\int_{x_1}^{x_2}+\displaystyle\int_{x_2}^{1}\right)f(x)\mathrm{d}x\)
\(f(x_0)(x_2-x_1 ) = \displaystyle\int_{x_1}^{x_2}f(x_0)\mathrm{d}x = \displaystyle\int_{x_1}^{x_2}f(x_0)-f(x)\mathrm{d}x + \displaystyle\int_{x_1}^{x_2}f(x)\mathrm{d}x\)
\(\therefore\displaystyle\int_{0}^{1}f(x)dx<f(x_0)(x_2 - x_1)\)
\(\iff\displaystyle\int_{0}^{x_1}f(x)\mathrm{d}x+\displaystyle\int_{x_2}^{1}f(x)\mathrm{d}x < \displaystyle\int_{x_1}^{x_2}f(x_0)-f(x)\mathrm{d}x\)
\(\Leftarrow \displaystyle\int_{0}^{x_1}f(x)\mathrm{d}x < \displaystyle\int_{x_1}^{x_0}f(x_0)-f(x)\mathrm{d}x 且 \displaystyle\int_{x_2}^{1}f(x)\mathrm{d}x < \displaystyle\int_{x_0}^{x_2}f(x_0)-f(x)\mathrm{d}x\)
Tip
先考虑第一个,本质上是左边红色和绿色部分面积的大小关系
容易想到的是构造 \(f(x)\) 关于 \(A(x_1,\dfrac{f(x_0)}{2})\) 中心对称的函数 \(h_1(x) = f(x_0)-f(2x_1-x)\)
这样就可以把红色的面积移动到下面来,然后题目的凹凸性又保证了 \(h_1(x)\) 始终在 \(f(x)\) 上方,所以成立,第二个同理
先证明 \(2x_1<x_0\iff x_1<\dfrac{x_0}{2} \iff f(x_1)= \dfrac{f(x_0)}{2} \lt f(\dfrac{x_0}{2})\)
这就是琴升不等式 \(\dfrac{f(x_0)+f(0)}{2} \lt f\left(\dfrac{x_0+0}{2}\right)\), 证略
构造 \(h_1(x) = f(x_0)-f(2x_1-x),x\le x_1\)
显然 \(h_1(2x_1-x_0) = 0,\displaystyle\int_{2x_1-x_0}^{x_1}h_1(x)\mathrm{d}x = \displaystyle\int_{x_1}^{x_0}f(x_0)-f(x)\mathrm{d}x\)
下面证明,\(0<x\le x_1\) 时,\(h_1(x)\ge f(x)\)
\(h(x) = h_1(x)-f(x) = f(x_0)-f(2x_1-x) -f(x),h(x_1) = 0\)
\(h'(x) = f'(2x_1-x)-f'(x),h'(x_1) = 0\)
\(h''(x) = -f''(2x_1-x)-f''(x) >0\)
\(\therefore h'(x)<0 ,h(x)\) 递减,\(h(x)\ge h(x_1) = 0\)
\(\therefore h_1(x)\ge f(x)\Rightarrow \displaystyle\int_{0}^{x_1}h_1(x)\mathrm{d}x > \displaystyle\int_0^{x_1}f(x)\mathrm{d}x\)
又 \(2x_1-x_0<x_0\) 时 \(h_1(x)>0\)
\(\therefore \displaystyle\int_{2x_1-x_0}^{x_1}h_1(x)\mathrm{d}x = \displaystyle\int_{x_1}^{x_0}f(x_0)-f(x)\mathrm{d}x > \displaystyle\int_0^{x_1}f(x)\mathrm{d}x\)
第一部分证明完毕,第二部分同理
所以最后的结论成立
Note
我这种做法画图以后思路就明晰了,但是实际写下来要写的还是有点多